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Robust estimates of overall immune-repertoire
diversity from high-throughput measurements on
samples
Joseph Kaplinsky1,2,w & Ramy Arnaout1,2,3

The diversity of an organism’s B- and T-cell repertoires is both clinically important and a key

measure of immunological complexity. However, diversity is hard to estimate by current

methods, because of inherent uncertainty in the number of B- and T-cell clones that will be

missing from a blood or tissue sample by chance (the missing-species problem), inevitable

sampling bias, and experimental noise. To solve this problem, we developed Recon, a modified

maximum-likelihood method that outputs the overall diversity of a repertoire from

measurements on a sample. Recon outputs accurate, robust estimates by any of a vast set of

complementary diversity measures, including species richness and entropy, at fractional

repertoire coverage. It also outputs error bars and power tables, allowing robust comparisons

of diversity between individuals and over time. We apply Recon to in silico and experimental

immune-repertoire sequencing data sets as proof of principle for measuring diversity in large,

complex systems.
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Recent technological advances are making it possible to
study B- and T-cell repertoires in unprecedented detail1.
Of special interest is repertoire diversity, defined as the

number of different B- or T-cell receptors on cells present in an
individual, tissue (for example, peripheral blood, bone marrow),
tumour (for example, tumour-infiltrating lymphocytes) or cell
subset (for example, influenza-specific IgGþ B cells).
This interest follows observations that immune-repertoire
diversity correlates with successful responses to infection,
immune reconstitution following stem-cell transplant, the
presence or absence of leukaemia, and healthy versus unhealthy
ageing2–5. The reliability of such observations depends on the
ability to measure diversity—and differences in diversity—in
overall B- or T-cell populations accurately and with statistical
rigour from clinical and experimental samples. Similar
requirements also arise in the study of cancer heterogeneity,
microbial diversity and high-throughput sequencing, as well as
beyond biology6–9. However, measuring diversity is more
complicated than it may seem, for three reasons.

First, ‘diversity’ may refer to any of several different measures.
The most familiar diversity measure is the number of different
species in a population: the species richness. An example of
species richness is the number of B-cell clones in an individual
(where ‘clone’ denotes cells with a common B- or T-cell
progenitor). Other diversity measures provide complementary
information about the size-frequency distribution of species in
the population. For example, the Berger–Parker index (BPI)
measures clonality, that is, the dominance of the single largest
clone (Fig. 1)10. Diversity measures that have been used on
immune repertoires include species richness, Shannon entropy
(henceforth ‘entropy’) and the Simpson and Gini-Simpson
indices11–14. Of these, species richness is unique in that it takes
no account of the frequency of each species. In contrast, entropy
and other measures systematically down-weight or undercount
rarer clones. The above measures (and many more) are related
through a mathematical framework described by Hill15,16. Using
simple mathematical transformations, this framework allows each
measure to be interpreted as the ‘effective number’ of species
of a given frequency, facilitating comparisons among different
measures (Fig. 1b). For example, entropy, conventionally
measured in bits, is converted into an effective number via
exponentiation. Thus, in the overall repertoire in Fig. 1, the
effective number of clones is 7.4 by entropy and 2.9 by BPI
(Fig. 1b). The point here is that different diversity measures
provide complementary information: two distinct repertoires can
have the same species richness but different entropies or BPIs,
and vice versa (Fig. 1d)10. Thus, no single measure is likely to
capture all of the features of interest in a given repertoire.
Consequently, methods for measuring immune-repertoire
diversity should be capable of outputting any diversity measure.

Second, the diversity of a sample (for example, a 5-millilitre
clinical blood sample) can differ markedly from the diversity of
the overall repertoire from which it derives (for example, the 5 l of
blood in the body). Although blood and tissue samples may
contain thousands or millions of B or T cells, these are only a
fraction of the billions of such cells that may comprise an overall
repertoire. Consequently, some clones in the overall repertoire,
especially small clones, almost always go unsampled and thereby
undetected in measurements on samples (Fig. 1a). As a result,
sample diversity usually underestimates true diversity (Fig. 1b).
This phenomenon is known as the missing-species problem17.
Weighted diversity measures (for example, entropy) are less
sensitive to missing species than is species richness, as they
down-weight the small clones that are most likely to be missing.
However, using weighted measures as a substitute for species
richness has drawbacks. First, it is unclear what information is

Diversity measure Overall Sample Ratio

Species richness 10.0 5.0 2.0x
Exp(entropy) 7.4 4.5 1.7x
Inverse Simpson index 5.6 4.2 1.3x
Inverse Berger-Parker index 2.7 1.1x
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Figure 1 | Overall repertoires versus samples. (a) An overall repertoire
(top left) and a random sample of this repertoire (top right), together with
respective clone-size distributions from the overall repertoire and sample
(bottom). Each circle denotes a cell; different colours denote different
clones. Note that five clones are missing from the sample entirely,
represented by the open red circle at a clone size of zero in the sample
clone-size distribution. (b) Sample diversity underrepresents overall
diversity across a range of diversity measures. (c) Recon reconstructs the
overall repertoire by estimating the number of missing clones and
iteratively updating until the predicted clone-size distribution in the sample
(red crosses) matches the observed clone-size distribution in the sample
(open circles), stopping short of overfitting. (d) Different diversity
measures are complementary. Repertoires R1, R2 and R3 each have a total
of 7 cells. R1 and R3 have the same species richness but different inverse
Berger–Parker index (BPI); R2 and R3 have the same BPI but different
species richness.
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lost or biased by selectively ignoring small clones. Second, even
using weighted measures, sample diversity will approximate
overall diversity only when clone sizes (the number of cells per
clone) in the sample approximate clone sizes in the overall
population; however, clone sizes will inevitably be biased by the
phenomenon of sampling noise. Note that unlike experimental
error, which can be minimized, sampling noise is intrinsic to
sampling, and will affect measurements even under perfect
experimental conditions (for example, even if every cell in a
sample is counted and perfectly annotated). Consequently,
depending on the clone-size distribution and diversity measure,
sampling can misrepresent overall diversity even when using
weighted measures (Fig. 1b and below).

Third, real-world experiments will always exhibit some degree
of experimental error, which manifests as noise in sample
measurements. Sources include quantification error due to
imprecise cell counts, amplification dropouts and jackpot effects;
sequence error from amplification and sequencing; and
annotation error introduced during data processing. Measuring
diversity accurately requires methods that address not only the
missing species problem and sampling noise, but experimental
noise as well.

Existing methods for addressing the missing species problem
either output only a single diversity measure (species richness) for
the overall population, or else have known or suspected problems
scaling to the complexity of immune repertoires. The first
category includes Fisher’s gamma-Poisson mixture method,
a parametric method that has been used on T-cell repertoires,
which involves a divergent sum that can result in large
uncertainties18–20; the phenomenological approach of extra-
polating from curve fitting13,14,21,22; and the Chao estimator
(CE), a fast and simple calculation that avoids divergent sums and
has been widely used in ecology23,24. The second category
includes maximum-likelihood approaches such as the
state-of-the-art methods of Norris and Pollock (NP)25,26 and
Wang and Lindsay (WL)27; however, to our knowledge, these
have not been tested on, or are known not to scale to, highly
complex populations like repertoires; or else make restrictive
assumptions about the clone-size distribution of the overall
repertoire and therefore are not generalizable28. Moreover,
because a higher-likelihood fit can often be had by adding more
small clones, existing maximum-likelihood approaches yield
estimates that may overestimate diversity by orders of
magnitude or be entirely unbounded—that is, they may find
that the best estimate of diversity in the overall population is
infinity29.

We move beyond these shortcomings using a new algorithm,
Recon—reconstruction of estimated clones from observed
numbers—a generalized high-performance modified maximum-
likelihood method that makes no assumptions about clone sizes
or clone-size distributions in the overall repertoire, estimates any
diversity measure, and leads naturally to sensible error bars that
facilitate practical, statistically reliable comparisons between
samples, including between individuals and over time, for
complex populations.

Results
Description. Recon is based on the expectation-maximization
(EM) algorithm6,30. Briefly, an initial description of the overall
distribution is refined iteratively based on agreement with the
sample distribution, adding parameters as needed until no further
improvement can be made without overfitting (Fig. 1c).
The result is the overall clone-size distribution that, if sampled
randomly, is statistically most likely to give rise to the
sample distribution subject to the no-overfitting constraint

(Supplementary Fig. 1). The only assumptions Recon makes are
that the overall repertoire is large relative to the sample and well
mixed.

The input is the observed clone-size distribution in a sample,
provided as list of clone sizes and counts. This is easily generated
from sequence data by counting clones that have the same
number of sequences in the data set for (at least semi-)
quantitative sequencing. Recon outputs (i) the overall clone-size
distribution; (ii) the diversity of the overall repertoire as measured
by species richness, entropy or any other Hill measure, with error
bars; (iii) the number of missing species, with error bars; (iv) the
minimum detected clone size (below); (v) the diversity of the
sample repertoire, for comparison to overall diversity and (vi) a
resampling of the overall distribution for comparison to the
sample and plots thereof. Recon can be run on tumour clones,
microbial species, sequence reads or other populations, including
non-biological ones. Recon can also generate tables for power
calculations and experimental design.

Recon embodies six improvements over the previous state
of the art. First, to avoid dependence on initial conditions or
becoming trapped in local maxima, Recon ‘scans’ a number of
initial conditions in each iteration of the algorithm. We verified
that scanning produces substantially better estimates of overall
clone sizes, missing species and diversity measurements
(Supplementary Fig. 4). Second, Recon optimizes the average of
the two best fits in each round (reminiscent of genetic
algorithms). Third, it includes a check to prevent overfitting
due to sampling noise. Fourth, it makes no assumptions about the
overall clone-size distribution, making it widely applicable.
Fifth, it improves over previous maximum-likelihood models
in avoiding unbounded uncertainties, for example, regarding
bounds on overall diversity estimates. And sixth, it is substantially
faster (Fig. 2b,c).

Current methods tend to overestimate species richness when
coverage is low, as small clones added to the estimate result in
overfitting of the sample distribution—in the limit, as mentioned,
leading to an estimate with infinite infinitesimal clones. Recon
uses discrete clone sizes, which in the worst case ensures that
estimates are bounded by the number of cells in the overall
repertoire (clones cannot outnumber cells). Beyond that, Recon’s
use of both a noise threshold and the (corrected) Akaike
information criterion provide tighter bounds, rejecting additional
clones unless their expected contribution to the sample rises
above sampling noise (by 3 standard deviations in our
implementation) and outweighs the penalty of adding more
parameters. The trade-off is that for each sample, there is a
minimum clone size that Recon can detect: if r1, Recon’s
species-richness estimate will include clones represented by just a
single cell in the overall repertoire, if there are any; if 41, in
principle there may be clones in the overall repertoire that are too
small to detect. In this case, Recon can be used to calculate a strict
upper bound, U, on species richness that includes clones that may
be ‘hiding’ (Methods and Supplementary Methods). However, we
note that even in this case, in practice, for a given sample, the
smallest clones detected may still be the smallest clones there are
(the case for our in silico repertoires; below).

Validation. We validated Recon on in silico repertoires that
spanned nearly five orders of magnitude of overall diversity
(300 to 10 million clones) and a wide range of clone-size
distributions: from steep, that is, dominated by small clones, to
flat exponentials; reciprocal–exponential distributions that derive
from a generative model; and multiple bimodal distributions of
small and large clones, 1,711 in all, with and without simulated
experimental noise (Methods). These repertoires served as gold
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standards. We sampled a known number of cells from each, for
coverage ranging from 0.01x to 10x, and used Recon to recon-
struct overall repertoires from each sample. (Coverage is
the number of cells in the sample divided by the number of clones
in the overall repertoire.) We then compared the diversity of the
reconstructed overall repertoire with the true overall diversity and
sample diversity. We measured diversity by species richness,
entropy, Simpson Index and BPI (Fig. 1b).

First, to illustrate the extent of the problem Recon solves, we
compared sample diversity with overall diversity (Fig. 2a). For a
given sample size, higher overall diversity means lower clonal
coverage (the number of cells in the sample per clone in the
overall repertoire). For each repertoire, the error, defined as the

difference between sample and overall diversity, grew as coverage
fell below 1x, because samples cannot have more clones than cells.
Consequently, for species richness, sample diversity under-
estimated true diversity by 50% at 1x coverage, 10-fold at 0.1x
coverage and 30 fold at 0.03x coverage. The weighted measures
performed little better, even for the flattest clone-size
distributions that we tested, partly due to the absence of clones
large enough to dominate these repertoires (for example.,
leukemic clones; Fig. 2 and Supplementary Fig. 2). We concluded
that sample diversity is generally an unreliable proxy for true
diversity below 1x coverage in the absence of dominant clones.

In contrast, Recon’s estimates of overall diversity showed
excellent agreement with true diversity across the range of
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Figure 2 | Comparison of diversity estimates. (a) Sample diversity (top) and Recon’s estimate (bottom) of overall diversity versus true overall diversity for
three different sample sizes—10,000 cells (filled circles), 100,000 cells (small open circles) and 1 million cells (large open circles)—for a representative
gold-standard distribution without noise (shown in Supplementary Fig. 2e, left panel; see Supplementary Fig. 2 for additional examples). Coverage is
defined as the number of cells in the sample divided by the effective number of clones in the overall population. Red line, unity (zero error). Left-to-right:
species richness, entropy and the inverse Berger–Parker index. (b) Performance summary of Recon versus two other state-of-the-art methods for
estimating any overall diversity measure (NP and WL) as well as a method for estimating only species richness (CE) on 3,200 noisy distributions, 100
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diversity measures, even at o1x coverage (Fig. 2a, lower panels).
For species richness, Recon’s estimates were accurate to within
1% of the true diversity at 10x coverage, 10% at 3x coverage and
50% at just 0.03x coverage—at which there is just one cell in the
sample for every 30 clones in the overall repertoire. Error for
entropy and other weighted measures was lower. Recon was also
robust to noise (Fig. 2b,c).

To visualize self-consistency, we resampled from the overall
repertoires we reconstructed from our gold-standard distributions
in order to compare the resulting sample clone-size distributions
to those of the original samples. We found excellent agreement
between predicted and observed frequencies of clone sizes across
the range of overall diversities and levels of coverage, including on
numbers of missing clones (Fig. 3). Recon’s ability to estimate the
number of missing clones accurately was a key contributor to the
accuracy of its overall diversity estimates. The number of missing
clones depended strongly on the number of singlets (clones
represented by a single cell) and doublets (two cells) in the
sample: large singlet-to-doublet ratios, with enough of both for
low sampling noise, gave more accurate estimates.

In head-to-head comparisons on 3,200 in silico samples with
experimental noise (Methods), Recon was both faster and more
accurate than the prior methods NP and WL, which like Recon,
can be used to estimate overall diversity by multiple diversity
measures (Fig. 2b,c and Supplementary Fig. 3). Specifically,
Recon’s median runtime of 4.7 s (95th percentile, 11 s) was 440x
faster than WL and 4800x faster than NP, both of which often
took hours and sometimes days to complete (Fig. 2c). Recon’s
median error of 0.23x was smaller than that of NP (0.25x) and
WL (0.26x), which was often off by orders of magnitude (mean,
198x; 95th percentile, 41,500x). Recon was also more than twice
as accurate as CE (0.53x median error; Fig. 2b,e), which is fast but
limited to outputting species richness.

Error bars and power calculations. Detecting reliable differences
in overall diversity requires that diversity estimates have reliable
bounds. Recon outputs two types of bounds: error bars on overall
diversity (more precisely, on the effective number of clones
greater than or equal to a minimum detected clone size) and a
maximum-possible overall species richness, U (Supplementary
Methods).

To build error bars, we first sampled gold-standard repertoires
systematically across three orders of magnitude of coverage
(0.01x–10x). For each sample, we used Recon to estimate overall
diversity. Because higher coverages produce better estimates, the
resulting error profile converges with increasing coverage to the
true overall diversity (Fig. 4a). The upper and lower contours of
this profile correspond to the largest and smallest values of
estimated diversity that are consistent with a given true diversity.
To make an error bar for a given estimated diversity, Recon uses
the contours of the error profile to find the true diversities for
which the estimated diversity is at the lower bound and the upper
bound. These respectively define the upper and lower error bars
(Fig. 4b,c). Following cross-validation, we adjusted our error
profile slightly so that error bars reflect 95% confidence intervals
(Methods). Combining error profiles across all samples suggests
that Z1x coverage generally produces error bars of r10% for
overall species richness (Fig. 4d), consistent with our previous
observations (Fig. 2).

Recon uses this error-bar framework to determine the coverage
required to confidently detect differences in diversity between
samples (for example, between individuals or over time). Given
an order-of-magnitude estimate of the overall diversity for two
samples, it outputs the minimum sample size for which error bars
for overall diversity estimates from these samples would not
overlap, at detection thresholds ranging from, for example, 1.1x

to 5x (Table 1). This sample size is the minimum required to
reject the null hypothesis that two estimates that differ by a given
amount are actually from the same overall repertoire, at a
confidence level of P¼ 0.05 (t-test; Supplementary Methods). Not
surprisingly, detecting larger differences requires smaller sample
sizes; less obviously, for a given overall diversity, there is a
minimum sample size below which the number of non-singlets is
expected to be too small for Recon to run. So an experiment
designed to detect a 1.1x (10%) difference in species richness
between two samples, in which the samples are drawn from
overall repertoires that have B100,000 clones, will require
Z313,792 cells from each sample for analysis. This is the number
of cells in the sample that are in small (r30 cell-) clones that
Recon requires to perform reconstruction; if half of the cells in a
sample of 314,000 cells belong to a single large clone, for example,
because of leukaemia, the remaining half comprising the
non-leukaemic clones will be sufficient to detect a 20% difference
in the species richness of the non-leukaemic portion of the
repertoire (which requires Z153,543 cells), but not 10%.

To test Recon and our error-bar framework beyond
exponentially and multimodally distributed samples, we ran it
on a sample distribution previously identified as causing
difficulties for overall species-richness estimation by multiple
existing methods, corresponding to an overall population of
B3,000 species sampled at B0.8x coverage (Supplementary
Methods)29. Three- and four-point mixture models, a logit
normal model, a log-gamma model and a beta model gave
variable estimates that ranged from 2,930 to 3,494 overall species,
with non-overlapping error bars that ranged from 2,867 to
410,000. In contrast, Recon returned an estimate of 3,014 overall
species, with error bars (2,709–3,513) that bracketed the range of
other models’ estimates, suggesting Recon improves on multiple
methods beyond WL and NP in arbitrary and/or difficult cases.

Experimental data. Having validated Recon, we next applied it to
six experimental data sets: four of paired heavy-and-light chain
sequence and two of heavy-chain sequence (Methods). We used
the authors’ clone definitions—clusters of reads with Z96%
nucleotide identity in heavy-chain complementarity determining
region 3 (CDRH3)31 or reads with identical CDRH3s and VH
annotations31—with the caveats that clone assignment is difficult,
some cells may not have been sequenced, artefacts are possible,
and sequencing is only semi-quantitative. Because such data sets
reflect the current state of the art in the field and are used for
diversity measurements, we considered them as (imperfect)
samples and used Recon to estimate diversity for the
corresponding overall repertoires (Table 2). As with our
gold-standard samples, resampling showed excellent agreement
with the observed data (Fig. 5). For four of the six repertoires, we
found that missing species accounted for the majority of clones:
that is, half of all clones are unseen, and species richness in the
sample underrepresents overall species richness by 2x. Entropy
was generally very similar between samples and overall
repertoires, resulting from very large clones and/or PCR jackpot
effects that contribute disproportionately to the entropy
calculation. Thus, in these data sets, overall species richness,
estimated using Recon, captures information lost during sampling
that entropy does not.

Discussion
High-throughput technologies enable highly detailed descriptions
of B- and T-cell repertoires. That these descriptions are generally
of samples, and not for example, blood or tissue repertoires
overall, may seem to be a distinction without a difference
when samples contain many cells. However, and perhaps
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counterintuitively, it turns out to be critical for estimating overall
diversity. Unless the number of cells in a sample exceeds the
number of clones in the overall repertoire by B3- to 10-fold
(Fig. 3), sample and overall diversity may bear little relation
(Fig. 2a, Supplementary Fig. 2a–c). Importantly, this discrepancy
is not a technological shortcoming but an inherent constraint of
random sampling (Fig. 1a). In humans, overall repertoires may
contain many millions of clones. Because routine blood samples
rarely contain more than a few million B and T cells of any sort
combined, they are too small for sample diversity to serve as a

reliable proxy for overall diversity. Thus, conclusions drawn only
from sample diversity measurements warrant caution.

This caveat applies for all diversity measures. Entropy, often
used to measure sample diversity in immune-repertoire studies, is
less prone to undercounting. However, in our gold-standard
repertoires even BPI, the Hill measure least prone to under-
counting and most robust to missing species, underestimates
overall diversity by an order of magnitude for levels of coverage
encountered in experiments (Fig. 2 and Supplementary Fig. 2).
It is unsurprising, then, that sample entropy can also
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the input data given to Recon. The open red circle denotes the number of missing clones, which was not known to Recon. Red crosses denote Recon’s
prediction of the clone-size distribution in the sample, based on its reconstruction of the clone-size distribution of the overall repertoire. This includes a
prediction for the number of missing clones, plotted as the number of clones of size zero, with error bars as shown.
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underestimate overall entropy in these repertoires (Fig. 2 and
Supplementary Fig. 2). Additional caveats apply to experimental
data sets. Insufficient read clustering will overestimate species
richness; for clone sizes defined proportional to the number of
reads, PCR jackpot effects can produce artificially large ‘clones,’
overestimating entropy. These biases, not mutually exclusive, may
affect species richness and entropy in the experimental data sets
we studied (Table 2). Better quantification (for example, via
barcoding and robust clonality modeling) would mitigate these
biases but not the bias intrinsic to sampling, which Recon
addresses.

Recon outperforms prior methods even for large, complex
clone-size distributions, at fractional coverage, and in the
presence of experimental noise (Figs 2 and 3 and
Supplementary Fig. 2). Notably, Recon avoids WL’s major failure
modes: the 10–50% of cases in which WL unpredictably takes
hours or days to run and/or overestimates diversity by orders
of magnitude. Recon’s characteristic runtime of seconds to a
minute is especially faster than NP, and negligible relative to the
hours-to-days of current sequence-processing pipelines. These
advantages are not unexpected given that Recon was designed for
handling samples from large, complex and arbitrary distributions.
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Figure 4 | Error bars. (a) A schematic representation of Recon’s diversity estimates (open circles) from a single gold-standard in silico repertoire with
overall diversity d for many different levels of coverage (¼ sample size/d). We used the absolute value of the proportional error of the worst fit at each level
of coverage, making an error profile that is vertically symmetric around d. Given a test sample, Recon first estimates the overall diversity, dR, and the
coverage. (b) Using the error profile, it then looks up the maximum (d") and minimum (d~) diversities that are consistent with its estimate (dR);
schematically, this is where the edges of the funnel plots for d" and d~ intersect. (c) Higher coverage gives smaller error (arrows). (d) Combining errors
from all 1,711 gold-standard repertoires into a single plot suggests that Z1x coverage generally gives error bars of 5–10% for species richness (line, median;
shaded area, 5th–95th percentiles).

Table 1 | Power calculations.

10,000 30,000 100,000 1 Million 3 Million

1.1 34,634 118,418 313,792 2,211,303 16,230,339
1.2 19,103 56,989 153,543 1,277,637 10,598,339
1.3 14,142 28,206 85,156 649,124 1,947,385
1.4 14,142 27,711 70,415 639,665 1,919,012
1.5 14,142 27,238 64,982 630,590 1,891,799
2.0 14,142 24,495 64,977 510,381 1,524,687
5.0 14,142 24,495 44,721 141,421 244,949

Table entries give the minimum number of cells that must be analysed in order to be able to detect a given fold-difference in species richness between two samples at P¼0.05 (row headings), given an
expected overall species richness (column headings). As noted in the main text, these numbers exclude cells that might belong to large clones (here, of clone size Z30 in the sample). Minima required
for reliable reconstructions are in grey. See Supplementary Methods for details.

Table 2 | Diversity estimates for experimental data sets from humans.

Subset Source Method Cells Species richness Missing species Entropy (clones) U, clones (min.
clone size, cells)

Sample Overall Sample Overall

IgGþ B cells,
individual 131

Healthy adult IgHþ L
single-cell

61,000 2,759 5,870
(4,761–8,395)

3,111
(2,002–5,636)

696 700 (691–720) 1 Million (400)

IgGþ B cells,
individual 231

Healthy adult IgHþ L
single-cell

47,000 2,211 4,616
(3,374–7,000)

2,405
(1,163–4,789)

345 348 (327–373) 5 Million (700)

Memory B cells
(IgG, IgM, and IgA)31

Healthy adult
Vaccinee

IgHþ L
single-cell

8,000 336 473 (446–614) 137 (77–245) 21 21 14 Million
(30,000)

Tetanus toxoid-specific
plasmablasts31

Healthy
immunized
adult

IgHþ L
single-cell

2,000 159 239 (200–313) 80 (41–154) 3.5 3.5 300,000
(1,000)

Bone-marrow plasma
cells37

Healthy adult IgH pooled
DNA

26,000 14,337 37,110
(27,350–58,916)

22,773
(13,013–44,579)

11,148 21,582
(20,891–22,572)

4 Million (80)

Non-tumour plasma
cells37

Multiple
myeloma
patient

IgH pooled
DNA

30,000 325 703
(563–1,081)

378 (238–756) 1.4 1.4 80,000 (80)

Summarized are Recon’s estimates of overall diversity for six data sets; its estimate of the number of missing species; comparisons to sample diversity, for species richness and entropy (given as effective
numbers; 2bits); upper bound (U) for species richness that includes potential ‘hiding’ clones and the minimum detected clone size (see the main text). Cell-surface phenotypes were as follows: IgGþ B
cells, IgGþCD2#CD14#CD16#CD36#CD43#CD235a# ; post-vaccination memory B cells, CD19þCD3#CD27þCD38int; tetanus-specific plasmablasts,
CD19þCD3#CD14#CD38þ þCD27þ þCD20# ; plasma cells, CD138þ . See references for details.
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Error bars and power tables are necessary steps towards being
able to compare diversity between samples and over time and
thus for evaluating diversity as a potential biomarker. Recon’s
error bars and tables for entropy, BPI and other measures mean
differences can be assessed for any measure or noise level. Recon’s
error bars perform well by practical tests, bracketing the number
of missing species in validation studies and squaring previous
models29. Its power tables offer guidance for sample requirements
during experimental design and suggest expected limitations for
different studies. For example, measuring the species richness
of naı̈ve repertoires of B107 clones32,33 will likely require
phlebotomy or apheresis samples; even then, detecting 50%
differences is probably the limit (Table 1). Meanwhile, measuring
diversity for effector/memory subsets should require only routine
blood draws (2–6 ml), which should detect sub-fold differences.
For marrow, spleen, tumour, granuloma or abscess samples, the
investigator must decide whether the sample is well mixed, which
Recon requires.

High-throughput technologies hold much promise for
measuring diversity in repertoires, cancer and other complex
populations, but current limitations warrant caution. Because
most sequencing experiments are still only semi-quantitative, the
number of reads does not always reflect the number of cells.
Chimerism and sequencing/annotation errors mean not all
clusters are clones. Incomplete cell lysis and sequencing
inefficiencies can underestimate sample size. These limitations
affect the calculation and interpretation of diversity estimates and
upper bounds; the examples we have shown should be interpreted
accordingly, even as they illustrate application of our method.
Overcoming these limitations will improve our understanding of
overall diversity, a defining characteristic of complex systems that
we can now better measure.

Methods
Core algorithm. Mathematically, the problem is to find the B- or T-cell clone-size
distribution in the individual (the ‘parent’ or ‘overall’ distribution) that is most
likely to give rise to the clone-size distribution that is observed in the sample
(the sample distribution; Fig. 1). From the parent distribution, we can then
calculate overall diversity according to any diversity measure in the Hill framework.

The core of our method is the EM algorithm, in which a rough approximation of
the parent distribution is refined iteratively until no further improvement can be
made without overfitting30.

The EM algorithm begins by assuming a parent distribution in which clones are
all the same size, taken from the mean of the observations. To perform the fit,
we need to know not just the observed clone frequencies but also the number of
missing species, which is unknown and therefore must first be estimated. Following
previous work34, we estimate the number of missing species by calculating the
expected clone-size distribution for a (Poisson) sample of the parent distribution
(see the ‘Sampling’ below) and applying the Horvitz–Thomson estimator35.
We then fit the clone size of the parent distribution using maximum likelihood,
recalculate the number of missing species, and repeat these steps until a self-
consistent number of missing species is obtained. This completes the first iteration
of the algorithm, yielding the uniform parent distribution that is most likely to give
rise to the sample distribution.

In the second iteration, we refine this uniform parent distribution by adding a
second clone size. We estimate the number of missing species for this new two-size
distribution, fit the two clone sizes and their relative frequencies by maximum
likelihood, and, as in the first iteration of the algorithm, repeat until there is no
further improvement34. The result (pending a check for overfitting, below) is the
two-clone-size parent distribution that is most likely to give rise to the sample
distribution.

In subsequent iterations, we continue to refine the parent distribution by adding
clone sizes and refitting as above, iterating until no more clone sizes can be added
without overfitting (using the corrected Akaike information criterion as a stop
condition). The result is the desired maximum likelihood estimate (MLE). Note
that whereas the sample distribution generally traces out a smooth curve, the MLE
parent distribution is spiky, reflecting the limited resolution that information in the
sample distribution provides about the parent distribution.

Sampling. We assume that each clone in the individual contributes cells to the
sampled population according to a Poisson distribution. This will be true if
(i) clones are well mixed in the blood or evenly distributed in the tissue being
sampled, (ii) the parent population is sufficiently large that the Poisson estimate for
the probability of, for example, a singleton contributing 41 cell is negligible and
(iii) no single clone is a large fraction (B30% or more) of the parent population.
In practice, condition (iii) is satisfied by counting large clones directly (see the
‘Fitting’).

Fitting. The largest clones may be represented by hundreds or even thousands of
cells in a sample. For such large clones, sampling error is small: the relative size of
the clone in the sample and in the individual will be about the same. As a result,
clones that are large enough to have sufficiently small sampling error do not have
to be fit by EM, and instead can simply be added to the MLE. We found that using
a threshold of 30 cells, and therefore applying EM only to clones that contribute
r30 cells to the sample and then adding larger clones back to the resulting MLE
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Figure 5 | Predictions versus observations, experimental data. Shown are Recon’s estimates of overall diversity for six experimental data sets. These
included (a,b) immunoglobulin heavy (IgH)- and light-chain (IgL) paired-chain sequencing experiments from IgGþ B cells from the blood of two different
subjects, (c) pooled-DNA IgH sequencing experiments on the bone-marrow plasma cells from a healthy adult, (d) IgHþ L of post-vaccination memory B
cells, (e) IgHþ L tetanus toxoid-specific plasmablasts and (f) pooled-DNA IgH sequencing experiments on the bone-marrow plasma cells from a multiple
myeloma patient (only the non-myeloma cells). Details, including references, are presented in Table 2.
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gives results that are indistinguishable from applying EM on the entire sample
distribution, but with vast gains in speed. (Note that observing an absence of clones
at a given size counts towards the number of observations used for calculating the
Akaike information criterion.)

Scanning. In the standard EM algorithm, the exact sizes and frequencies of clones
in the final MLE can vary depending on the sizes and frequencies used at the start
of each iteration, reflecting different local maxima. To find global maxima, we
developed a ‘scanning’ approach in which we applied EM to many starting clone
sizes and frequencies (56 in our implementation), ranking results by maximum
likelihood (after first adjusting likelihoods according to the number of ways to
choose clones in each distribution; see Supplementary Methods). In each round, we
perform an additional fit with starting clone sizes and frequencies at an average of
the two top-ranked results. We then select the resulting best-ranked fit from the
starting points. Runtime and (to some extent) accuracy correlate with the number
of starting points.

Diversity measures. Species richness, entropy, the Gini-Simpson Index, BPI and
indeed many other diversity measures are related to each other through the
mathematical framework of the so-called Hill numbers15,36. These form a series in
which the index reflects the extent to which counts are weighted towards large
clones. Species richness, in which large and small clones are counted equally and so
large clones are unweighted, has an index of zero and is denoted 0D (‘D-zero’).
Other measures, or simple mathematical transformations thereof, correspond to
larger indices; these include entropy (ln(1D)), the Simpson Index (1/2D) and
BPI (1/ND).

We calculated 0D, 1D, 2D and ND for sample and overall distributions from in
silico-sampled synthetic gold-standard distributions (see the ‘Validation’ below and
in the main text) and from several published data sources (see the ‘Experimental
data’ in the main text). These qD are a function of clone frequencies pi, where i
indexes each clone and the frequencies are normalized to

P
ipi¼ 1, defined as

qDðpÞ ¼ ð
P

i pq
i Þ

1=ð1# qÞ (ref. 36).
We calculated 0D by simply counting the number of different clones, 1D

according to exp (#
P

ipi ln pi), 2D according to the definition and ND as the
reciprocal of the frequency of the largest clone (the above definition reduces to
these expressions for the value q¼ 0 and in the limits q-1 and q-N).

Validation. We validated Recon against CE, NP and WL by generating a wide
range of biologically plausible synthetic parent distributions of 109 cells in silico,
sampling from these distributions to produce samples of different known sizes,
using the samples to estimate overall diversities according to species richness by the
listed methods and the other above measures for all but CE (which outputs only
species richness), and comparing these estimates against the (known) calculated
diversities of the original parent distributions. We studied three families of test
distributions in detail: (i) exponential distributions (of the form f (x)pe# sx, where
x denotes clone size, f(x) is the frequency of clones of that size and s is a parameter
that controls the steepness of the distribution), which are simple distributions
that describe the shape of observed sample distributions phenomenologically;
(ii) ‘reciprocal-exponential’ distributions ðf ðxÞ / 1

xe# sxÞ, which are the analytical
solution to a simple biologically plausible model of the dynamics of most B- and
T-cell clones; (iii) bimodal distributions with the largest clones an average multiple
of the size of the smallest clones (for example, 20–30x) in the overall population.
We tested these distributions systematically by varying the steepness from very
steep (s¼ 0.2) to nearly flat (s¼ 0.02) exponential distributions and different
multiples for the bimodal distributions, encompassing a range of biologically
plausible clone-size distributions, with and without noise. We investigated three
different modes of noise: (i) noise added to each count n with mean of zero and
standard deviation 1.22 &

ffiffiffi
n
p

, (ii) a small baseline amount of noise added to all
clone sizes and (iii) sporadic noise at random clone sizes (reminiscent of PCR
jackpot effects). For completeness, we tested on both Macintosh (2.7 GHz Intel
Core i5 running OS X 10.11.1) and Linux (2.3–2.8 GHz Intel Xeons running RHEL
CentOS 6.6) platforms. NP and WL fits that were still incomplete after 100 h were
terminated.

Error bars. Error bars define the range of overall diversity values that, given
inevitable sampling error and any error in reconstructing parent distributions from
samples of a given size, are consistent with Recon’s estimate. We determined error
bars for each diversity measure (species richness, entropy and so on) as follows
(Fig. 4). First, we generated a wide range of exponentially and multimodally
distributed in silico parent populations with known diversities of 3' 102–1' 107

species. Next, we took samples of these known distributions at systematically
increasing coverage/sample sizes from 0.01x to 10x and, for each sample size, ran
Recon to estimate the overall diversity, running on 1,716 samples in all (Fig. 4a).
Five outliers (0.3%) were removed, leaving 1,711. For each overall diversity and
coverage, the error was defined as the difference between the (true) overall diversity
and Recon’s overall diversity estimate. Given a test sample, the coverage, and
Recon’s estimate, one can then look up or interpolate from these errors the largest
and smallest diversity values that are consistent with the estimate (Fig. 4b,c). These
upper and lower bounds define the desired error bars on Recon’s estimate.

We established these error bars as 95% confidence intervals using Monte Carlo
cross-validation. Briefly, we randomly partitioned the above 1,711 samples 70–30
into reference and validation sets 100 times, each time using the reference set to
calculate error bars for the samples in the validation set and counting how often
error bars bracketed true diversity. These raw error bars bracketed true diversity in
93.6±1.3% of cases; adjusting them by raising the upper bar by 1.6% brought this
figure to the desired conventional level for confidence intervals, 95% (96.2±1.0%).
Note that error bars bracketed true diversities despite the formal possibility of there
being clones in the parent population too small to observe in the sample (see the
‘Minimum detected clone sizes and upper bounds (U)’ below), meaning in practice
this was not an issue. The above procedure can be generalized to incorporate
arbitrary models of experimental noise.

Experimental data sets. We found and downloaded six publically available data
sets. Four were from paired heavy-and-light-chain sequencing experiments: two of
IgGþ B cells (from two subjects), one of memory B cells post-influenza vaccination
and one of tetanus-toxoid-specific plasmablasts31. Following that study’s methods,
we clustered reads with Z95% heavy-chain complementarity-determining region 3
(CDR3) nucleotide identity (the study treated clusters as clones). The other two
data sets were of pooled PCR of heavy-chain genomic DNA from bone-marrow
plasma cells from a healthy subject and non-myeloma plasma cells from a subject
with multiple myeloma, with clones defined as sequences with identical CDR3s at
the amino-acid level and identical VH nucleotides37. We estimated the total
number of IgGþ B cells, post-vaccination memory B cells, tetanus-specific
plasmablasts (and plasma cells), bone-marrow plasma cells in a healthy patient and
non-myelomatous plasma cells to be 75 million, 260 million, 3.5 million, 6 million
and 3 million, respectively, for N (see below)38–43.

Minimum detected clone sizes and upper bounds (U). The smallest clone size in
the reconstructed clone-size distribution is described by two parameters: the mean
number of cells that each clone of this size contributes to the sample, mmin, and the
fraction of all clones that are of this size, wm. The size of this smallest detectable
clone in the overall repertoire is mmin scaled to the total number of cells, mminN/S,
where N is the total number of cells in the overall repertoire and S is the number of
cells in the sample (the sample size). This is Recon’s minimum detected clone size.
It is possible that there are clones smaller than this size in the overall repertoire, but
because they contribute a mean of zero cells to the sample they are not detected
and therefore do not contribute to Recon’s estimate of overall species richness. An
upper bound on species richness that includes clones smaller than the minimum
detected clone size, U, is obtained by assuming that all cells in clones that could be
smaller than this are singlets: U¼RmaxwmmminN/S, where Rmax is Recon’s upper
error bar estimate of overall species richness (Supplementary Methods). We cal-
culated these quantities for our validation and experimental data.

Data availability. Data referenced in this study are available at
http://www.nature.com/nbt/journal/v31/n2/full/nbt.2492.html#supplementary-
information and http://www.impactjournals.com/oncotarget/index.php?journal=
oncotarget&page=article&op=downloadSuppFile&path%5B%5D=469&path%5B%
5D=852. Recon is available subject to license agreement at http://arnaoutlab.
github.io/Recon. Other data supporting the findings of this study are available from
the corresponding author upon request.
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